2,236 research outputs found

    Large-angle scattering and quasi-elastic barrier distributions

    Get PDF
    We study in detail the barrier distributions extracted from large-angle quasi-elastic scattering of heavy ions at energies near the Coulomb barrier. Using a closed-form expression for scattering from a single barrier, we compare the quasi-elastic barrier distribution with the corresponding test function for fusion. We examine the isocentrifugal approximation in coupled-channels calculations of quasi-elastic scattering and find that for backward angles, it works well, justifying the concept of a barrier distribution for scattering processes. This method offers an interesting tool for investigating unstable nuclei. We illustrate this for the 32^{32}Mg + 208^{208}Pb reaction, where the quadrupole collectivity of the neutron-rich 32^{32}Mg remains to be clarified experimentally.Comment: 26 pages, 10 eps figure

    Revised theory of the magnetic surface anisotropy of impurities in metallic mesoscopic samples

    Full text link
    In several experiments the magnitude of the contribution of magnetic impurities to the Kondo resistivity shows size dependence in mesoscopic samples. It was suggested ten years ago that magnetic surface anisotropy can be responsible for the size dependence in cases where there is strong spin-orbit interaction in the metallic host. The anisotropy energy has the form ΔE=Kd(nS)2\Delta E=K_d ({\bf n}{\bf S})^2 where n{\bf n} is the vector perpendicular to the plane surface, S{\bf S} is the spin of the magnetic impurity and Kd>0K_d>0 is inversely proportional to distance dd measured from the surface. It has been realized that in the tedious calculation an unjustified approximation was applied for the hybridizations of the host atom orbitals with the conduction electrons which depend on the position of the host atoms. Namely, the momenta of the electrons were replaced by the Fermi momentum kFk_F. That is reinvestigated considering the kk-dependence which leads to singular energy integrals and in contrary to the previous result KdK_d is oscillating like sin⁡(2kFd)\sin (2 k_F d) and the distance dependence goes like 1/d31/d^3 in the asymptotic region. As the anisotropy is oscillating, for integer spin the ground state is either a singlet or a doublet depending on distance dd, but in the case of the doublet there is no direct electron induced transition between those two states at zero temperature. Furthermore, for half-integer (S>1/2S > 1/2) spin it is always a doublet with direct transition only in half of the cases.Comment: 10 pages, 4 figure

    Generalized rotational hamiltonians from nonlinear angular momentum algebras

    Full text link
    Higgs algebras are used to construct rotational Hamiltonians. The correspondence between the spectrum of a triaxial rotor and the spectrum of a cubic Higgs algebra is demonstrated. It is shown that a suitable choice of the parameters of the polynomial algebra allows for a precise identification of rotational properties. The harmonic limit is obtained by a contraction of the algebra, leading to a linear symmetry.Comment: 3 figures, 6 pages, 15 references. Phys. Rev. C (in press, ms CZ10038

    Tunable coupling of superconducting qubits

    Full text link
    We study an LC-circuit implemented using a current-biased Josephson junction (CBJJ) as a tunable coupler for superconducting qubits. By modulating the bias current, the junction can be tuned in and out of resonance and entangled with the qubits coupled to it. One can thus implement two-qubit operations by mediating entanglement. We consider the examples of CBJJ and charge--phase qubits. A simple recoupling scheme leads to a generalization to arbitrary qubit designs.Comment: To appear in Phys. Rev. Lett., 3 figure

    Compact and Loosely Bound Structures in Light Nuclei

    Get PDF
    A role of different components in the wave function of the weakly bound light nuclei states was studied within the framework of the cluster model, taking into account of orbitals "polarization". It was shown that a limited number of structures associated with the different modes of nucleon motion can be of great importance for such systems. Examples of simple and quite flexible trial wave functions are given for the nuclei 8^8Be, 6^6He. Expressions for the microscopic wave functions of these nuclei were found and used for the calculation of basic nuclear characteristics, using well known central-exchange nucleon-nucleon potentials.Comment: 19 pages, 3 ps figure

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Aspects of Superembeddings

    Full text link
    Some aspects of the geometry of superembeddings and its application to supersymmetric extended objects are discussed. In particular, the embeddings of (3|16) and (6|16) dimensional superspaces into (11|32) dimensional superspace, corresponding to supermembranes and superfivebranes in eleven dimensions, are treated in some detail.Comment: 13 pages, Latex, Contribution to Supersymmetry and Quantum Field Theory, International Seminar dedicated to the memory of D. V. Volkov (Kharkov, 1997), some clarifications are mad

    Geometry of random interactions

    Get PDF
    It is argued that spectral features of quantal systems with random interactions can be given a geometric interpretation. This conjecture is investigated in the context of two simple models: a system of randomly interacting d bosons and one of randomly interacting fermions in a j=7/2 shell. In both examples the probability for a given state to become the ground state is shown to be related to a geometric property of a polygon or polyhedron which is entirely determined by particle number, shell size, and symmetry character of the states. Extensions to more general situations are discussed

    Principal forms X^2 + nY^2 representing many integers

    Get PDF
    In 1966, Shanks and Schmid investigated the asymptotic behavior of the number of positive integers less than or equal to x which are represented by the quadratic form X^2+nY^2. Based on some numerical computations, they observed that the constant occurring in the main term appears to be the largest for n=2. In this paper, we prove that in fact this constant is unbounded as n runs through positive integers with a fixed number of prime divisors.Comment: 10 pages, title has been changed, Sections 2 and 3 are new, to appear in Abh. Math. Sem. Univ. Hambur
    • 

    corecore